Massive Dirac fermions in a ferromagnetic kagome metal

https://www.nature.com/articles/nature25987


Authors : Linda Ye*, Mingu Kang*, Junwei Liu, Felix von Cube, Christina R. Wicker, Takehito Suzuki, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, David C. Bell, Liang Fu, Riccardo Comin and Joseph G. Checkelsky

(*These authors contributed equally to this work)

Department of Physics, MIT, Cambridge, MA 02139, USA


Abstract : The kagome lattice is a two-dimensional network of corner-sharing triangles that is known to host exotic quantum magnetic states. Theoretical work has predicted that kagome lattices may also host Dirac electronic states that could lead to topological and Chern insulating phases, but these states have so far not been detected in experiments. Here we study the d-electron kagome metal Fe3Sn2, which is designed to support bulk massive Dirac fermions in the presence of ferromagnetic order. We observe a temperature-independent intrinsic anomalous Hall conductivity that persists above room temperature, which is suggestive of prominent Berry curvature from the time-reversal-symmetry-breaking electronic bands of the kagome plane. Using angle-resolved photoemission spectroscopy, we observe a pair of quasi-two-dimensional Dirac cones near the Fermi level with a mass gap of 30 millielectronvolts, which correspond to massive Dirac fermions that generate Berry-curvature-induced Hall conductivity. We show that this behaviour is a consequence of the underlying symmetry properties of the bilayer kagome lattice in the ferromagnetic state and the atomic spin–orbit coupling. This work provides evidence for a ferromagnetic kagome metal and an example of emergent topological electronic properties in a correlated electron system. Our results provide insight into the recent discoveries of exotic electronic behaviour in kagome-lattice antiferromagnets and may enable lattice-model realizations of fractional topological quantum states.







146 views

© MIT KGSA, all rights reserved.

This website was designed by Taeseop Shin and Choongman Lee.

newsletter.

 

Get the lastest news

about MIT KGSA.